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Abstract

In order to stabilize the behavior of noisy systems, confining it around a
desirable state, an effort is required to suppress the intrinsic noise. This
noise suppression task entails a cost. For the important case of thermal noise
in an overdamped system, we show that the minimum cost is achieved when
the system control parameters are held constant: any additional deterministic
or random modulation produces an increase of the cost. We discuss the
implications of this phenomenon for those overdamped systems whose control
parameters are intrinsically noisy, presenting a case study based on the example
of a Brownian particle optically trapped in an oscillating potential.

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

Noisy systems are ubiquitous in natural and engineered phenomena. The presence of noise
becomes particularly evident when we move down into molecular-scale phenomena: the
thermal noise, responsible for the Brownian diffusion of particles, is omnipresent. However,
noise is also intrinsic to many macroscopic systems [1–5]: stock markets, population dynamics,
ecosystems and traffic flows, all present some degree of noise.

Even though in recent years the constructive role of noise has been appreciated in many
physical, chemical and biological phenomena—examples include stochastic resonance [6–11],
noise-induced transitions [12], noise-induced transport [13–15], stochastic resonant damping
[16]—there are many situations in which the intrinsic noise of a system is still a nuisance that
one wants to keep under control, and minimize if possible [17–19].

Noise suppression is a crucial task at all scales. Microscopic and nanoscopic phenomena
have to deal with thermal noise. Complex pricing systems, such as the Black–Scholes option
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pricing model [20], have been developed for dealing with the noise present in the stock markets.
Given the insolubility of the multi-body problem, noise has to be dealt with in the planning
of satellites’ trajectories. In all these cases, one needs to exert some kind of control on the
system in order to minimize its intrinsic noise. Often these actions are controlled by some
input parameters, which may also vary over time either deterministically or randomly.

Here we will focus on an Ornestein–Uhlenbeck equation, which describes an overdamped
system. Such an equation describes a very wide class of systems, and it has successfully been
applied to systems as diverse as macromolecules that follow the Hooke’s law, Brownian
particles, electronic devices and mesoscopic chemical reactions [21]. As a simple example let
us consider the diffusion of a Brownian particle. The particle position variance is reduced if the
particle is confined in a potential well. This potential well can be produced by various means:
by a molecule that binds the particle, by hydrodynamic focusing or by optical or magnetic
tweezers. All these means have in common that they exert a restoring force on the particle
whenever it is displaced from the desired position. A tighter confinement of the particle is
achieved by increasing the stiffness of the link, but a higher stiffness implicates undergoing a
higher cost to run the system.

Here we analyze the cost of noise suppression in non-equilibrium systems and introduce a
cost function to quantify the effort made to control such a system. We show that the minimum
cost is achieved when the system control parameters are held constant. We find that any
additional deterministic or random modulation of the control parameters entails an increase
of the cost function.

2. Model

We consider a dynamical system driven by a Gaussian white random process dBt (Wiener
process), whose state st freely evolves according to dst = dBt . By introducing a restoring
force, characterized by a constant stiffness k̄, the system can be forced to fluctuate around
a state ā, with variance σ 2

s = 1/2k̄. The stochastic dynamics of the system (known as the
Ornstein–Uhlenbeck process) is described by

dst = −k̄(st − ā) dt + dBt . (1)

We can now analyze the effect of fluctuating parameters by letting the mean state at and
the stiffness kt—and therefore the intrinsic fluctuations σ 2

s = 1/2kt—as generic processes
independent of dBt and possibly dependent between themselves with E[at ] = 0 and E[kt ] > 0,
where E[·] denotes the expected value. These two conditions guarantee the long-term stability
of the system. In the case of a Brownian particle, they assure that the particle will not eventually
escape from the potential. The former condition (E[at ] = 0), in particular, signifies that the
potential keeps on oscillating around the state s = 0; the latter (E[kt ] > 0) that the average
stiffness is positive. In particular, all our conclusions apply to the case in which at and kt

are functions of an Ornstein–Uhlenbeck process. Note also that the conclusions also apply
to the case in which at and kt are deterministic functions, considering that these are a special
case of the random function. The system time evolution obeys the equation

dst = −kt (st − at ) dt + dBt . (2)

As we have already mentioned, the diffusion of a Brownian particle in a time-varying
potential is an example of processes described by (2) [16, 22, 23]. A free particle diffuses in
such a way that the variance of its position grows linearly with time. The diffusion process
can be partially suppressed by confining the particle in a potential well which, for example,
can be produced by an optical trap [24]. In the presence of an optical trap, whose center and
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stiffness oscillate, the particle position obeys equation (2), with at being the center of the trap
and kt its stiffness.

With our analysis we aim at finding the output variance of the state of the system described
by (2) when the parameters vary over time in an arbitrary fashion. In particular we will
identify four contributions in the total variance: intrinsic variance σ 2

s(i), stiffness variance
σ 2

s(k), equilibrium variance σ 2
s(a), interplay covariance ρs(ak). All these cases may be studied

experimentally.
Instead of attacking the general case directly, we will proceed by steps, starting by

investigating some limiting cases. This will permit us to build up the necessary intuition and
to gain useful insights into the phenomenon.

We note that in the cases we study the Itô and Stratonovich approaches to stochastic
integration are mathematically equivalent, because the diffusion term is constant [25, pp 35–
37]. Here we are considering the system’s steady state, but the conclusions apply with little
variations also to the transient.

2.1. The stationary case (at ≡ 0 and kt ≡ k̄)

The simplest case is when the equilibrium position of the harmonic potential does not oscillate
(at ≡ 0) and its stiffness is kept constant (kt ≡ k̄ > 0). This is the benchmark against which
all other results will be compared. Equation (2) simplifies as

dst = −k̄st dt + dBt . (3)

Its solution can be found by multiplying by the integrating factor ek̄t and comparing with
d(ek̄t st ) = k̄ ek̄t st dt + ek̄t dst . The solution is

st = e−k̄t x0︸ ︷︷ ︸
→0

+e−k̄t

∫ t

0
ek̄u dBu →

∫ t

0
e−k̄(t−u) dBu, (4)

where the limit has been taken for large t.
It follows that the mean of the system is E[st ] = 0 because it is an Itô integral, and its

variance is

E
[
s2
t

] =
∫ t

0
E[e−2k̄(t−u)] du =

∫ t

0
e−2k̄(t−u) du = 1 − e−2k̄t

2k̄
→ 1

2k̄
, (5)

where the Itô isometry E
[( ∫ t

0 f (u, ω) dBu

)2] = E
[ ∫ t

0 f 2(u, ω) du
]

has been used [25, 26].
We can therefore identify the intrinsic variance as a contribution to the total variance of

the system

σ 2
s(i) = 1

2k̄
. (6)

As we will see this is the minimum variance that can be achieved for a given value of the cost
function, i.e. for a given k̄.

2.2. Fluctuating kt (at ≡ 0)

When at ≡ 0, equation (2) simplifies as

dst = −kt st dt + dBt, (7)
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where kt is an Itô process independent of Bt . Again the solution can be calculated
by multiplying by the integrating factor e

∫ t

0 ku du and comparing with d
(
e
∫ t

0 ku dust

) =
kt e

∫ t

0 ku dust dt + e
∫ t

0 ku du dst . Its solution is

st = e− ∫ t

0 ku dux0︸ ︷︷ ︸
→0

+e− ∫ t

0 ku du

∫ t

0
e
∫ u

0 kv dv dBu →
∫ t

0
e− ∫ t

u
kv dv dBu, (8)

where the first term vanishes for large t because E[kt ] = k̄ > 0.
We can therefore calculate the mean and the variance of the system.

E[st ] = E

[∫ t

0
e− ∫ t

u
kv dv dBu

]
= 0, (9)

because it is an Itô integral, and

E
[
s2
t

] =
∫ t

0
E

[
e−2

∫ t

u
kv dv

]
du �

∫ t

0
e−2k̄(t−u) du = σ 2

s(i) (10)

where we have used the Itô isometry and Jensen inequality [27] E
[
e−2

∫ t

u
kv dv du

]
�

e−2E[kt ](t−u) du integrated over time with E[kt ] = k̄.
We can now identify the stiffness variance as a contribution to the total system variance,

caused by the variation of the stiffness

σ 2
s(k) =

∫ t

0
e−2k̄(t−u)E

[
e−2

∫ t

u
(kv−k̄) dv − 1

]
du. (11)

2.3. Fluctuating at (kt ≡ k̄)

The case when the equilibrium position of the potential at is oscillating, while kt ≡ k̄ remains
constant, was investigated both theoretically and experimentally in [16]. However, a different
approach was applied there and it can be useful to obtain the same result expressed in the
current formalism. Equation (2) becomes

dst = −k̄(st − at ) dt + dBt . (12)

It can again be solved by multiplying by the integrating factor ek̄t and comparing with
d(ek̄t st ) = k̄ ek̄t st dt + ek̄t dst . Its solution is

st = e−k̄t s0︸ ︷︷ ︸
→0

+k̄ e−k̄t

∫ t

0
ek̄uau du + e−k̄t

∫ t

0
ek̄u dBu (13)

= k̄

∫ t

0
ek̄(t−u)au du +

∫ t

0
ek̄(t−u) dBu. (14)

Since the process at is independent of Bs , in the calculation of the variance of st the
contributions of the two integrals can be separated,

E
[
s2
t

] = σ 2
s(i) + σ 2

s(a), (15)

where the equilibrium variance

σ 2
s(a) = k̄2E

[(∫ t

0
ek̄(t−u)au du

)2
]

(16)

is the contribution to the variance of the system due to the oscillation of the equilibrium
position of the potential. The second term is the one corresponding to the stationary state.
More details and a discussion of how this effect produces the stochastic resonant damping can
be found in [16].
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2.4. General case—fluctuating at and kt

In the general case given by equation (2), again the solution can be calculated by multiplying by
the integrating factor e

∫ t

0 ku du and comparing with d
(
e
∫ t

0 ku dust

) = kt e
∫ t

0 ku dust dt + e
∫ t

0 ku du dst .
The general solution is

st = e− ∫ t

0 ku dus0︸ ︷︷ ︸
→0

+ e− ∫ t

0 ku du

∫ t

0
e
∫ u

0 kv dvkuau du + e− ∫ t

0 ku du

∫ t

0
e
∫ u

0 kv dv dBu (17)

=
∫ t

0
e
∫ t

u
kv dvkuau du +

∫ t

0
e
∫ t

u
kv dv dBu. (18)

For large t following a procedure similar to the previous cases the variance of the system
in the general case is given by

E
[
s2
t

] = E

[(∫ t

0
e− ∫ t

u
kv dv dBu

)2
]

+ E

[(∫ t

0
e
∫ t

u
kv dvkuau du

)2
]

(19)

= σ 2
s(i) + σ 2

s(k) + E

[(∫ t

0
e
∫ t

u
kv dvkuau du

)2
]

(20)

= σ 2
s(i) + σ 2

s(k) + ρs(ak) + σ 2
s(a), (21)

where

ρs(ak) = E

[(∫ t

0
e
∫ t

u
kv dvkuau du

)2
]

− k̄2E

[(∫ t

0
ek̄(t−u)au du

)2
]

(22)

is the interplay covariance, which can be either positive or negative. However, the total
variance is always larger than the intrinsic variance, since, as can be seen from equation (21),
the overall contribution due to the oscillation of the stiffness and the equilibrium position is
always positive

σ 2
s(k) + ρs(ak) + σ 2

s(a) > 0. (23)

2.5. Cost function

As equation (19) shows that one can use different protocols in order to change the output
variance of a given intrinsically noisy system by means of the modulation of the system
parameters. Now we do the next step and ask the key question of this study: how one can
compare the protocols from the point of view an effort applied to change the output variance?
To deal with such a question mathematically, we suggest introducing a cost function.

The idea of a cost function, sometimes referred to as an objective function, is very well
established in the fields of economic optimization [28] and in engineering [29]: it permits
one to compare the performance of systems that work under different conditions. Typically
for a given cost one looks for the parameters that provide the best performance (the smallest
variance in our case). We introduce here the idea and the importance of a cost function in
the study of the confinement of overdamped systems. An appropriate cost function needs to
describe the overall effort made in a system to achieve its confinement.

For a stationary system, the stiffness k̄ fully describes the confinement effort. Indeed, as
we have seen, the output variance of a stationary system σ 2

s(i) is inversely proportional to the
stiffness. Therefore to define the cost function as C = k̄ seems rather natural.
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We introduce a similar cost function for systems whose parameters are modulated over
time. First, as was shown in [16], the modulation of the mean state at does not affect the effort
made to confine the system; we therefore need to consider only the modulation of the stiffness
in order to introduce the cost function. For the systems where the stiffness kt varies over time,
we suggest using as a cost function the average value of the stiffness

C̄ = E[kt ]. (24)

As seen the cost function of a stationary system calculated using this formula has the same
value as it was defined before.

Let us compare the variance of a stationary system and the same system but with modulated
parameters, assuming that the cost functions are equal for both systems. To maintain the cost
function of the system constant, we must keep the average stiffness invariant E[kt ] = k̄. From
this condition it follows that the intrinsic variance σ 2

s(i) is also constant, and, as a straightforward
consequence of equation (21), it coincides with the minimum variance. This means that for a
given value of the cost function the output variance of the system with modulated parameters
is bounded by its intrinsic variance

E
[
s2
t

] = σ 2
s(i) + σ 2

s(k) + ρs(ak) + σ 2
s(a) > σ 2

s(i). (25)

This can equivalently be stated as the fact that, for a given cost function, any additional
deterministic or random modulation implicates a larger system variance. For a given value of
the cost function the minimum of the variance is achieved when the control parameters are
constant. From another point of view this means also that for a given system variance, any
additional deterministic or random modulation produces an increase of the cost function.

2.6. Notes on nonlinear potentials

The discussion so far has been centered on a fluctuating linear potential V lin
t (s) = k2

t

2 (s − at )
2,

which leads to the well-established Ornstein–Ulhenbeck equation. This is a good model to
describe a wide range of phenomena from many fields of physics, biology and economy.
In particular, the Ornstein–Ulhenbeck model is a first-order-approximated description of the
behavior of an intrinsically noisy system and it is the reference model for a Brownian particle
kept in a trapping potential.

However, there are effects, such as stochastic resonance, that require nonlinear potentials
to manifest themselves. Therefore it is worthy to briefly extend the discussion presented here
to the case of systems characterized by a nonlinear potential. We can consider such potential
as a series expansion

V nl
t (s) = k2

t

2

+∞∑
n=1

[αn(s − at )
2n + βn(s − at )

1/(2n)]. (26)

Note that we consider a potential around an equilibrium position. In this paper we have studied
in detail the linear case, i.e. αn = δ1n and βn = 0.

In the case nonlinear terms are relevant, we might still define the cost as a function of kt ,
as defined in equation (24). However, the general conclusion of this paper may not apply, i.e.
there are nonlinear potentials for which the presence of a fluctuation can produce a decrease
of the variance. This is true, for example, for a potential with only β2 > 0 in the limit of fast
fluctuations. The exact behavior of this is an interesting argument that is being investigated
and will be subject of a future work.
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3. Brownian particle example

Experimental results related to our study were presented in [22] where the dynamics of a
Brownian particle held in an optical trap with modulated position and stiffness was measured.
For a given experimental configuration the stiffness of the (stationary) trap, and, therefore, the
achieved confinement is proportional to the optical power P used to create the trap (k̄ ∝ P).
Therefore, a higher confinement requires an higher optical power and the cost function of the
system is defined as C = k̄ ∝ P .

In the presence of an optical trap, whose center and stiffness oscillate, the particle position
obeys equation (2), with at being the center of the trap and kt = 1

/
σ 2

s its stiffness. In this
case, the cost function is C̃ = E[kt ] ∝ E[P(kt )], where the optical power P(kt ) that must be
used to create the optical trap also fluctuates.

By using a specific protocol of modulation of the trap parameters a reduced variance of
the observed particle position as compared to a stationary trap was observed. We analyzed
the experimental data by calculating the cost function for the stationary and modulated traps.
When a stationary trap was used (stiffness k(0) = 3.7 pN μm−1) the output variance of the
particle position was σ 2

out = 1087 nm2 (figure 1(b) of [22]). With the oscillating trap, the
output position variance was indeed reduced to σ 2

out = 764 nm2 (figure 1(c) of [22]). From
the data presented in [22] we calculated the average stiffness as k̄ = E[kt ] = ∫ +∞

−∞ kpk(k) dk,
therefore substituting the time average with the average over pk(k) the probability density
of kt (figure 1(b) of [22]), which can be computed from equations (2) and (3) of [22]. The
average stiffness of the modulated trap (and therefore the average optical power introduced in
the system and the cost function of the process of the noise reduction) was found considerably
bigger than that in the stationary case (k̄ = 6.8 pN μm−1). Therefore, we can conclude that
the higher confinement of the particle position in the trap was achieved not due to the addition
of noise to the trapping parameters, but also due to the higher average trapping power, while
the added noise slightly increases the output variance. We note that a stationary trap with
such average power and the same experimental configuration would produce an even smaller
output variance than the modulated trap did.

4. Conclusions

We have shown that to suppress the intrinsic noise of a system entails a cost. For a noisy
system in the overdamped regime controlled by a fluctuating input parameter, we have found
out that the minimum cost is achieved when the system control parameters are held constant:
any additional deterministic or random modulation of the parameters yields an increase of
the cost function. It is not possible to reduce the output noise of a system below a threshold
value, corresponding to constant input parameters without increasing the cost function of the
system. This has important implications both from the fundamental point of view, in order
to understand many natural phenomena—for example, the natural optimization of cellular
molecular phenomena—and from the engineering one, where it can give a guidance in the
management of the intrinsic noise of a system.
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